40 years of convex polyhedra, and what's more to say?

David Monniaux

VERIMAG

2018-06-04

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

Invariants for dynamic systems

CITS Verimas STATOR

Invariants for control-flow graphs

Cousot \& Halbwachs, 1978
Halbwachs, 1979

Loop nests

Is there anything wrong?

Loop nests

```
for(int i=0; i<n; i++) { // 0\leqi\leqn
        for(int j=i; j<n; j++) { // 0 \leqi\leqj\leqn
        t[i][j] = 42;
    }
}
```

Is there anything wrong?
Need to assume $n>0$.

Loops

```
assume(n > 0);
i = 0; j = n;
while(i < j) { // 0 \leqi\leqj\leqn^i+j=n
    i++;
    j--;
}
```


Curse of dimensionality

Costs tend to increase exponentially with number of variables.

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

Double description

Generators

Convex hull of

- vertices
- rays
- lines

Constraints

Solution set of a system of

- inequalities
- equalities

Duality

constraints \leftrightarrow generators
faces \leftrightarrow vertices
convex hull \leftrightarrow intersection
inclusion \leftrightarrow reverse inclusion
Any worst case on one description is a worst-case on the dual for a dual operation!

STATOR

Redundancy of constraints

$$
\left\{\begin{array}{c}
x \geq 0 \\
y \\
x+y \\
x+1 \\
x+2 y
\end{array} \quad \leq 2\right.
$$

The last constraint is redundant: all points satisfying the other constraints satisfy it.
It can be safely removed.

Witness of redundancy

Farkas lemma: semantic consequence \Longleftrightarrow positive combination of original inequalities (plus slack)

R
STATOR

Unicity of representation

If the polyhedron has nonempty interior (= is not flat)
Unique set of irredundant constraints (up to scaling and rearranging: $2 x-2 \leq 0$ same as $x \leq 1$)

Each constraint defines a true face of the polyhedron.

Empty interior

No canonicity

$$
\left\{\begin{array}{ccc}
x & \leq & y+z \\
y+z & \leq & t \\
t & \leq & x \\
0 & \leq & x \\
t & \leq & 1
\end{array}\right.
$$

equivalent to

$$
\left\{\begin{array}{ccc}
x & \leq & y+z \\
y+z & \leq & t \\
t & \leq & x \\
0 & \leq & x \\
x & \leq & 1
\end{array}\right.
$$

Affine span

Extract a system of equalities defining the affine span

$$
\left\{\begin{array}{c}
x=y+z=t \\
0 \leq x \\
t \leq 1
\end{array}\right.
$$

Orient the equations of the affine span into a rewriting system (variable ordering: x, y function of $z, t): x \longrightarrow t, y \longrightarrow t-z$. Canonify:

$$
\left\{\begin{array}{c}
x=y+z=t \\
0 \leq t \leq 1
\end{array}\right.
$$

Chernikova's algorithm

Step

Inputs: one polyhedron P as generators, one inequality I Output: $P \cap I$ as generators

Constraints to generators
Process all constraints sequentially from full polyhedron
Generators to constraints
Dually

Le Verge, A Note on Chernikova's algorithm (1996)

Chernikova in action

Distorted hypercube

Very common in program analysis (known intervals).
$2 n$ constraints
2^{n} vertices
All libraries computing with double description explode.

Avoiding blowup

Halbwachs, Merchat, Gonnord (2006): factor polyhedra into products Same principle in ETHZ's ELINA library (2017)

Our solution: constraints only

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

David Monniaux (VERIMAG)

Octagons

$$
\text { system of } \pm v_{1} \pm v_{2} \leq C \text { and } \pm v \leq C
$$

Templates

fixed set of normal vectors

 2018-06-04
Exact solving

Can solve for the least inductive invariant in a template linear constraint domain.

See as optimization (minimization) problem on the right-hand sides b.
"Does there exist an inductive invariant with b_{i} less than C ?"

- Arbitrary polynomial arithmetic on the edges: reduction to $\exists \forall$ formula in real closed fields.
- Linear arithmetic, \exists, \wedge, \vee on the edges: problem is Σ_{p}^{2}-complete.

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

Constraint-only representation

Easy

- intersection

Moderately easy
LP = linear programming, $n=$ number of constraints

- emptiness check (1 LP)
- redundancy elimination ($n \mathrm{LP}$)

How?

- projection
- convex hull

Fourier-Motzkin

- Combine each $x \leq \ldots$ with each $x \geq \ldots$:

$$
f_{1}(y, z, \ldots) \leq x \leq f_{2}(y, z, \ldots) \longrightarrow f_{1}(y, z, \ldots) \leq f_{2}(y, z, \ldots)
$$

- Keep the inequalities not depending on x.

Fourier-Motzkin

Pros

- Easy algorithm
- Easy proof of correctness (nice if doing Coq)

Cons

- Generates a huge volume of redundant constraints (Worst-case output $n^{2} / 4$ for one projection. Can it actually go double exponential with number of projections if not removing redundancies?)
- If projecting several variables: chose an ordering on the canonical basis, not much geometrical.

Redundancy elimination by linear programming

"Is C redundant with respect to $C_{1} \wedge \cdots \wedge C_{n}$."

- Primal "Find x satisfying $C_{1} \wedge \cdots \wedge C_{n}$ but not C." x exists iff C is irredundant.
- Primal as optimization version C is $l(x, y \ldots) \leq a$, optimize lover $C_{1} \wedge \cdots \wedge C_{n}$ and compare to a.
- Dual "Find $\lambda_{i} \geq 0$ such that $C=\sum_{i} \lambda_{i} C_{i}$." λ exist iff C is redundant.

If done for each of n constraints, quite costly.

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

David Monniaux (VERIMAG)
40 years of convex polyhedra, and what's more to say?
2018-06-04
29 / 40

Ray-tracing, fast redundancy elimination

Maréchal \& Périn (2017)

Parametric linear programming for projection

Parameters appearing linearly in the objective function: line of sight to face

Parametric linear programming for convex hull

Parameters appearing linearly in the objective function: line of sight to face

2018-06-04

Fast parametric linear programming

- Parallel exploration of the region graph
- Use of floating-point for exact solving
- Elimination of redundant constraints of region using ray-tracing

Floating-point for exact solving

The simplex algorithm does not simply give a numeric solution!
It gives a vertex as the intersection of n constraints.

- The vertex can be recomputed exactly and checked if a true solution or not.
- In the basis defined by the constraints, the objective function should be "trivially" at an optimum (all coefficients negative / positive). This can be computed exactly.

Our solution

- Call off-the-shelf floating-point linear programming solver (exploration in floating-point)
- Reconstruct in exact precision (linear arithmetic $A x=b$) the vertex and optimality witness.

Gratuitous advertisement

https://github.com/VERIMAG-Polyhedra/VPL
Alexis Fouilhé • Alexandre Maréchal
Sylvain Boulmé • David Monniaux • Michaël Périn • Hang Yu

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

David Monniaux (VERIMAG)

Are heuristics truly necessary?

Input

A control flow graph with arithmetic transitions
A bad control state
Output
Yes / no
Can we decorate the control-flow graph inductive polyhedral invariants with \emptyset on the bad state?

Warning
This is not the same as "is the bad state reachable?", clearly undecidable.

One control state suffices

Idea: encode control state $1 \leq i \leq n$ as a vertex of a simplex with n vertices over extra variables.
Use guards "am I on this vertex? then do..."
"Convexification" add points in the middle, weeded out by the guards.
This simulates the original problem exactly.

Monniaux, 2018

Some undecidability

Undecidable if polynomial guards are allowed.

Idea:

- Add two variables i, j : each step $i+=i+1, j+=j+i$, so (i, j) draw a parabola.
- All points added by the "convexification" lie above the parabola $j=P(i)$.
- Conjoin guards $j \leq P(i)$ to remove these spurious points.
- A convex polyhedral invariant exists if and only if the program terminates.
- Invariant = convex hull of reachable points.

Open question if only linear transitions.

Questions?

Advertisement: need a Coq developer for a CompCert backend for a secure processor

