40 years of convex polyhedra, and what's more to say?

David Monniaux

VERIMAG

2018-06-04

David Monniaux (VERIMAG)

Plan

Polyhedra as invariants

- **Double description**
- Restricted polyhedra
- Constraints only, Fourier-Motzkin
- Our contributions
- Why heuristics?

David Monniaux (VERIMAG)

Invariants for dynamic systems

David Monniaux (VERIMAG)

Cousot & Halbwachs, 1978 Halbwachs, 1979

2018-06-04 4/40

David Monniaux (VERIMAG)

Loop nests

```
for(int i=0; i<n; i++) { // 0 ≤ i ≤ n
for(int j=i; j<n; j++) { // 0 ≤ i ≤ j ≤ n
t[i][j] = 42;
}</pre>
```

Is there anything wrong?

David Monniaux (VERIMAG)

Loop nests

```
for(int i=0; i<n; i++) { // 0 ≤ i ≤ n
    for(int j=i; j<n; j++) { // 0 ≤ i ≤ j ≤ n
        t[i][j] = 42;
    }
}</pre>
```

Is there anything wrong? Need to assume n > 0.

David Monniaux (VERIMAG)

Loops

```
assume(n > 0);
i = 0; j = n;
while(i < j) { // 0 ≤ i ≤ j ≤ n ∧ i+j = n
i++;
j--;
}
```


David Monniaux (VERIMAG)

Curse of dimensionality

Costs tend to increase exponentially with number of variables.

David Monniaux (VERIMAG)

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

David Monniaux (VERIMAG)

Double description

Generators

Convex hull of

- vertices
- rays
- lines

Constraints

Solution set of a system of

- inequalities
- equalities

David Monniaux (VERIMAG)

Duality

 $constraints \leftrightarrow generators$

faces \leftrightarrow vertices

 $\mathsf{convex}\;\mathsf{hull}\leftrightarrow\mathsf{intersection}$

inclusion \leftrightarrow reverse inclusion

Any worst case on one description is a worst-case on the dual for a dual operation!

David Monniaux (VERIMAG)

Redundancy of constraints

The last constraint is **redundant**: all points satisfying the other constraints satisfy it. It can be safely removed.

Witness of redundancy

$$(1) \quad -x \qquad \leq \quad 0 \\ \quad -y \quad \leq \quad 0 \\ (2) \quad x \quad +y \quad \leq \quad 1 \\ \hline x \quad +2y \quad \leq \quad 2 \\ \end{cases}$$

Farkas lemma: semantic consequence \iff positive combination of original inequalities (plus slack)

David Monniaux (VERIMAG)

Unicity of representation

If the polyhedron has **nonempty interior** (= is **not flat**)

Unique set of irredundant constraints

(up to scaling and rearranging: $2x - 2 \le 0$ same as $x \le 1$)

Each constraint defines a true face of the polyhedron.

David Monniaux (VERIMAG)

Empty interior

No canonicity

$$\begin{cases} x & \leq y+z \\ y+z & \leq t \\ t & \leq x \\ 0 & \leq x \\ t & \leq 1 \end{cases}$$

equivalent to

$$\begin{cases}
x \leq y+z \\
y+z \leq t \\
t \leq x \\
0 \leq x \\
x \leq 1
\end{cases}$$

David Monniaux (VERIMAG)

Affine span

Extract a system of equalities defining the affine span

$$\begin{cases} x = y + z = t \\ 0 \le x \\ t \le 1 \end{cases}$$

Orient the equations of the affine span into a rewriting system (variable ordering: x, y function of z, t): $x \rightarrow t, y \rightarrow t - z$. Canonify:

$$\begin{cases} x = y + z = t \\ 0 \le t \le 1 \end{cases}$$

David Monniaux (VERIMAG)

Chernikova's algorithm

Step

Inputs: one polyhedron *P* as generators, one inequality *I* Output: $P \cap I$ as generators

Constraints to generators

Process all constraints sequentially from full polyhedron

Generators to constraints Dually

Le Verge, A Note on Chernikova's algorithm (1996)

David Monniaux (VERIMAG)

Chernikova in action

David Monniaux (VERIMAG)

Distorted hypercube

Very common in program analysis (known intervals).

$$\begin{cases} l_1 \leq x_1 \leq h_1 \\ \vdots & \vdots & \vdots \\ l_n \leq x_n \leq h_n \end{cases}$$

2n constraints

 2^n vertices

All libraries computing with double description explode.

David Monniaux (VERIMAG)

Avoiding blowup

- Halbwachs, Merchat, Gonnord (2006): factor polyhedra into products Same principle in ETHZ's ELINA library (2017)
- Our solution: constraints only

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 19 / 40

Plan

Polyhedra as invariants

Double description

Restricted polyhedra

Constraints only, Fourier-Motzkin

Our contributions

Why heuristics?

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 20 / 40

Octagons

system of $\pm v_1 \pm v_2 \leq C$ and $\pm v \leq C$

David Monniaux (VERIMAG)

Templates

fixed set of normal vectors

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04

Exact solving

Can solve for the least inductive invariant in a template linear constraint domain.

See as optimization (minimization) problem on the right-hand sides *b*.

"Does there exist an inductive invariant with b_i less than C?"

- ► Arbitrary polynomial arithmetic on the edges: reduction to ∃∀ formula in real closed fields.
- Linear arithmetic, \exists , \land , \lor on the edges: problem is Σ_p^2 -complete.

David Monniaux (VERIMAG)

Plan

- Constraints only, Fourier-Motzkin

24 / 40

David Monniaux (VERIMAG)

Constraint-only representation

Easy

intersection

Moderately easy

- LP = linear programming, n = number of constraints
 - emptiness check (1 LP)
 - redundancy elimination (n LP)

How?

- projection
- convex hull

Fourier-Motzkin

• Combine each $x \leq \ldots$ with each $x \geq \ldots$:

$$f_1(y, z, \dots) \leq x \leq f_2(y, z, \dots) \longrightarrow f_1(y, z, \dots) \leq f_2(y, z, \dots)$$

• Keep the inequalities not depending on *x*.

Resulting system $\equiv \exists x \, \$$

David Monniaux (VERIMAG)

Fourier-Motzkin

Pros

- Easy algorithm
- Easy proof of correctness (nice if doing Coq)

Cons

- Generates a huge volume of redundant constraints (Worst-case output n²/4 for one projection. Can it actually go double exponential with number of projections if not removing redundancies?)
- If projecting several variables: chose an ordering on the canonical basis, not much geometrical.

Redundancy elimination by linear programming

"Is *C* redundant with respect to $C_1 \wedge \cdots \wedge C_n$."

- ▶ **Primal** "Find *x* satisfying $C_1 \land \cdots \land C_n$ but not *C*." *x* exists iff *C* is irredundant.
- ▶ **Primal as optimization version** *C* is $l(x, y...) \le a$, optimize *l* over $C_1 \land \cdots \land C_n$ and compare to *a*.
- ▶ **Dual** "Find $\lambda_i \ge 0$ such that $C = \sum_i \lambda_i C_i$." λ exist iff *C* is redundant.

If done for each of *n* constraints, quite costly.

Plan

- Polyhedra as invariants
- **Double description**
- Restricted polyhedra
- Constraints only, Fourier-Motzkin
- Our contributions
- Why heuristics?

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 29 / 40

Our contributions

Ray-tracing, fast redundancy elimination

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04

30 / 40

Parametric linear programming for projection

Parameters appearing linearly in the objective function: line of sight to face

Maréchal, 2017

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 31 / 40

Parametric linear programming for convex hull

Parameters appearing linearly in the objective function: line of sight to face

Maréchal, 2017

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 32 / 40

Fast parametric linear programming

- Parallel exploration of the region graph
- Use of floating-point for exact solving
- Elimination of redundant constraints of region using ray-tracing

David Monniaux (VERIMAG)

Floating-point for exact solving

The simplex algorithm does not simply give a numeric solution!

It gives a **vertex** as the intersection of *n* constraints.

- The vertex can be recomputed exactly and checked if a true solution or not.
- In the basis defined by the constraints, the objective function should be "trivially" at an optimum (all coefficients negative / positive). This can be computed exactly.

Our solution

- Call off-the-shelf floating-point linear programming solver (exploration in floating-point)
- Reconstruct in exact precision (linear arithmetic Ax = b) the vertex and optimality witness.

Gratuitous advertisement

https://github.com/VERIMAG-Polyhedra/VPL

Alexis Fouilhé · Alexandre Maréchal Sylvain Boulmé · David Monniaux · Michaël Périn · Hang Yu

David Monniaux (VERIMAG)

willy neuristics:

Plan

- Polyhedra as invariants
- **Double description**
- Restricted polyhedra
- Constraints only, Fourier-Motzkin
- Our contributions

Why heuristics?

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04 36 / 40

willy neuristics:

Are heuristics truly necessary?

Input

A control flow graph with arithmetic transitions A bad control state

Output

Yes / no

Can we decorate the control-flow graph inductive polyhedral invariants with \emptyset on the bad state?

Warning

This is not the same as "is the bad state reachable?", clearly undecidable.

One control state suffices

Idea: encode control state $1 \le i \le n$ as a vertex of a simplex with *n* vertices over extra variables. Use guards "am I on this vertex? then do..."

"Convexification" add points in the middle, weeded out by the guards.

This simulates the original problem exactly.

Monniaux, 2018

David Monniaux (VERIMAG)

Some undecidability

Undecidable if polynomial guards are allowed.

Idea:

- ► Add two variables *i*, *j*: each step *i*+ = *i* + 1, *j*+ = *j* + *i*, so (*i*, *j*) draw a parabola.
- All points added by the "convexification" lie above the parabola j = P(i).
- Conjoin guards $j \le P(i)$ to remove these spurious points.
- A convex polyhedral invariant exists if and only if the program terminates.
- Invariant = convex hull of reachable points.

Open question if only linear transitions.

Monniaux, 2018

David Monniaux (VERIMAG)

willy neuristics:

Questions?

Advertisement: need a Coq developer for a CompCert backend for a secure processor

David Monniaux (VERIMAG)

40 years of convex polyhedra, and what's more to say?

2018-06-04

40 / 40