
The Signal synchronous language:
the principles beyond the language

and how to exploit and extend them
Albert Benveniste and Thierry Gautier (Inria-Rennes)
Acknowledgement: Paul Le Guernic and Loïc Besnard

Nicolas Halbwachs Feria, June 2018

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 2

Years1980-90

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 3

C2A

Synchron

Years1980-90

Oulu

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 4

The
official
picture

Oulu

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 5

A
picture
taken
by
Nicolas

Hand
written

notes
by

Albert
at a talk

given
by

Nicolas

The
official
picture

Synchronous Guys
by Willem-Paul de Roever, 2002

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 6

Giving birth to
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Yes, but…
Well, cannot disagree…

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 7

Giving birth to
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 8

Giving birth to
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

It’s not time!

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 9

Giving birth to
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Is it simple?
Is it powerful?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

It’s not time!

It can be
It can be

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 10

Giving birth to
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Is it simple?
Is it powerful?

What about crowd-correcting?
Crowd-cleaning?

Crowd-debugging?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

It’s not time!

It can be
It can be

It’s all crowdless
Semantics, semantics, semantics,
semantics, and more semantics

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 11

Signal: an original positioning in the
landscape of synchronous languages

Albert Benveniste and Thierry Gautier June 2018

Lustre
dataflow functional languages

Lustre, Lucid Synchrone,
Scade, (Zélus)

• Streams (seq. of values)
• Dataflow composition à la

Kahn: functional

• Simple
• No delay-free loop
• Higher order: dynamicity

• (Clocks as types)

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 13

Esterel
imperative languages

Esterel, SyncCharts,
SCL/SCCharts,
ReactiveML, the web

• variables and values,
await, emit, ||, preemption

• Difficulty: combining ||
and immediate control
passing

• Reaction as a fixpoint
problem: 0/1/several
solutions

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 14

Signal
equation based language

Open systems and
architecture modeling:
• Synchronization
• Clocks as 1st class citizens

A program can have 1000’s
of clocks ⇒ clocks must be
synthesized, not verified
• (clocks as types in Lustre

⇒ “condact” used in Scade)

• Clock equations +
Dataflow expressions

• Nondeterminism
(but controlled)

• Open systems: stuttering
invariance

• (a system has always the provision
to sleep while its environment acts)

• Difficulty: Clocks ↔ Data

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 15

Contents

1. Signal in the landscape of synchronous languages

2. The Signal vintage watch

3. The clock and causality calculus

4. Beyond the causality calculus: upgrading Signal
to support data constraints

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 16

The Signal vintage watch

Albert Benveniste and Thierry Gautier June 2018

Signal in the landscape of
synchronous languages

The Signal vintage watch

The clock and causality calculus

Beyond the causality calculus: upgrading
Signal to support data constraints

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 18

(X := IN default ZX-1 stream funct
| ZX := X$1 init 0 stream funct
| IN ^= when (ZX < 0)) clock eqn

Signal code Intuitive pseudo-codes:

X := pre(X)-1
reset IN every pre(X)<0

Input IN returns X (mmmmhhh??)
IN is provided only when used

IN

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 19

(X := IN default ZX-1 stream funct
| ZX := X$1 init 0 stream funct
| IN ^= when (ZX < 0)) clock eqn

Signal code Intuitive pseudo-code

X := pre(X)-1
reset IN every pre(X)<0

Input IN returns X (mmmmhhh??)
IN is provided only when used

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 20

(X := IN default ZX-1 stream funct
| ZX := X$1 init 0 stream funct
| IN ^= when (ZX < 0)) clock eqn

This was Signal code; intuitive pseudo-code is:

X := pre(X)-1
reset IN every pre(X)<0

Input IN returns X (mmmmhhh??)
IN is provided only when used

IN 2 3 5
ZX 0 2 1 0 3 2 1 0 5
X 2 1 0 3 2 1 0 5 4

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 21

(X := IN default ZX-1 stream funct
| ZX := X$1 init 0 stream funct
| IN ^= when (ZX < 0)) clock eqn

This was Signal code; intuitive pseudo-code is:

X := pre(X)-1
reset IN every pre(X)<0

IN is schizophrenic: its value is an input of the
program but its clock (instants of presence) is not

IN 2 3 5
ZX 0 2 1 0 3 2 1 0 5
X 2 1 0 3 2 1 0 5 4

X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

Signal

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 22

X := f(U,V)

X := Y$1 init X0

•: absence (stuttering invariance)

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •

Signal

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 23

X := f(U,V)

X := Y$1 init X0

X := U default V

X := Y when B

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •

X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

X u1 • • • v2 • u2 •
U u1 • • • • • u2 •
V v1 • • • v2 • • •

X y • • • yk • • •
Y y1 yk
B True True

X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

Signal

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 24

X := f(U,V)

X := Y$1 init X0

X := U default V

X := Y when B

K ^= H equality of clocks: a constraint

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •

X u1 • • • v2 • u2 •
U u1 • • • • • u2 •
V v1 • • • v2 • • •

X y • • • yk • • •
Y y1 yk
B True True

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 25

(X := IN default ZX-1
| ZX := X$1 init 0
| IN ^= when (ZX < 0))

(X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
| B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
| H ^= B ^= X ^= ZX) clock eqn

[B]: when B
Expanded as

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 26

(X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
| B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
| H ^= B ^= X ^= ZX) clock eqn

[B]: when B

XIN ZX

H[B]

B

HIN H-HIN(X := IN default ZX-1
| ZX := X$1 init 0
| IN ^= when (ZX < 0))

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 27

(X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
| B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
| H ^= B ^= X ^= ZX) clock eqn

[B]: when B
case B true
case B false

XIN ZX

H[B]

B

HIN H-HIN

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 28

(X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
| B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
| H ^= B ^= X ^= ZX) clock eqn

[B]: when B
case B true
case B false

XIN ZX

H[B]

B

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 29

(X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
| B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
| H ^= B ^= X ^= ZX) clock eqn

[B]: when B
case B true
case B false

X ZX

H[B]

B

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 30

(X := IN default ZX-1
| ZX := X$1 init 0
| B := (ZX < 0)
| IN ^= (when B)
| H ^= B ^= X ^= ZX)

XIN ZX

H[B]

B

HIN H-HIN

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 31

(X := IN default ZX-1
| ZX := X$1 init 0
| B := (ZX < 0)
| IN ^= (when B)
| H ^= B ^= X ^= ZX)

XIN ZX

H[B]

B

HIN H-HIN

An example of Signal program
and its compilation

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 32

(X := IN default ZX-1
| ZX := X$1 init 0
| B := (ZX < 0)
| IN ^= (when B)
| H ^= B ^= X ^= ZX)

(
(H ^= B ^= X ^= ZX
| IN ^= (when B))

|
(X H
| ZX H
| B (H,ZX)
| (when B) B
| IN (when B)
| (X IN) when B
| (X ZX) when not B)

|
(B := (ZX < 0)
| ZX := X$1 init 0
| (X := IN) when B
| (X := ZX-1) when not B)

) XIN ZX

H[B]

B

HIN H-HIN

An example of Signal program
and its compilation

Albert Benveniste and Thierry Gautier -- June 2018

Clock equations

Causality constraints

Computation actions

(
(H ^= B ^= X ^= ZX
| IN ^= (when B))

|
(X H
| ZX H
| B (H,ZX)
| (when B) B
| IN (when B)
| (X IN) when B
| (X ZX) when not B)

|
(B := (ZX < 0)
| ZX := X$1 init 0
| (X := IN) when B
| (X := ZX-1) when not B)

)

An example of Signal program
and its compilation

Albert Benveniste and Thierry Gautier -- June 2018

(X := IN default ZX-1
| ZX := X$1 init 0
| IN ^= when (ZX < 0))

Signal compilation
is by
program rewriting

(
(H ^= B ^= X ^= ZX
| IN ^= (when B))

|
(X H
| ZX H
| B (H,ZX)
| (when B) B
| IN (when B)
| (X IN) when B
| (X ZX) when not B)

|
(B := (ZX < 0)
| ZX := X$1 init 0
| (X := IN) when B
| (X := ZX-1) when not B)

)

The clock and causality calculus

Intuition

Albert Benveniste and Thierry Gautier June 2018

Signal in the landscape of
synchronous languages

The Signal vintage watch

The clock and causality calculus

Beyond the causality calculus: upgrading
Signal to support data constraints

Clock and causality calculus

Albert Benveniste and Thierry Gautier -- June 2018

(
(H ^= B ^= X ^= ZX
| IN ^= (when B))

|
(X H
| ZX H
| B H,ZX
| (when B) B
| IN (when B)
| (X IN) when B
| (X ZX) when not B)

|
(B := (ZX < 0)
| ZX := X$1 init 0
| (X := IN) when B
| (X := ZX-1) when not B)

)

∅ = when B ∩ whennot B

X ZX ; X:=ZX-1
IN ^= when B

X IN ; X:=IN

H ^= B ^= X ^= ZX
X,ZX H

B H,ZX ; B:=(ZX<0)
when B B

H

when not Bwhen B

X ZX ; X:=ZX-1
IN ^= when B

X IN ; X:=IN

H ^= B ^= X ^= ZX
X,ZX H

B H,ZX ; B:=(ZX<0)
when B B

Albert Benveniste and Thierry Gautier -- June 2018

H

when Cwhen B

(
(H ^= B ^= X ^= ZX
| IN ^= (when B))

|
(X H
| ZX H
| B,C H,ZX
| (when B) B
| IN (when B)
| (X IN) when B
| (X ZX) when C)

|
(B := (ZX < 0); C:=…
| ZX := X$1 init 0
| (X := IN) when B
| (X := ZX-1) when C)

)

Clock and causality calculus

X ZX ; X:=ZX-1
IN ^= when B

X IN ; X:=IN

H ^= B ^= X ^= ZX
X,ZX H

B H,ZX ; B:=(ZX<0)
when B B

Albert Benveniste and Thierry Gautier -- June 2018

H

when Cwhen B

To ensure the absence of race
condition, a proof obligation

is added to the clock calculus:

∅ ^= when B ∩ when C

Clock and causality calculus

In general, clock equations
originate from:

• the code itself

• race conditions: have
them with ∅ clock

• causality circuits: have
them with ∅ clock

We need to prove that the
clock system is satisfiable
and we must represent all
solutions of it

Albert Benveniste and Thierry Gautier -- June 2018

X ZX ; X:=ZX-1
IN ^= when B

X IN ; X:=IN

H ^= B ^= X ^= ZX
X,ZX H

B H,ZX ; B:=(ZX<0)
when B B

H

when Cwhen B

Clock and causality calculus

Clock equations
originate from:
• the code itself
• race conditions: have

them with ∅ clock
• causality circuits:

have them
with ∅ clock

Wanted: a clock
hierarchy, leading to
code with nested ifs

Albert Benveniste and Thierry Gautier -- June 2018

The clock equations

Clocks and clock equations
1. ∅ (nil); no “top”
2. H ^= K
3. H ^∧ K, H ^∨ K
4. H ^- K (not K by abuse)

5. when pred(X,Y,…)

For the classes 1—4 of
eqns a near-Boolean
calculus applies:
• the only difference is

that no top exists

Class 5 is special:
when pred(X,Y,…)
is a predicate that
cannot be rewritten
in a different form
(X,Y,… uncontrolled)

Albert Benveniste and Thierry Gautier -- June 2018

The clock equations

Clocks and clock equations
1. ∅ (nil); no “top”
2. H ^= K
3. H ^∧ K, H ^∨ K
4. H ^- K (not K by abuse)

5. when pred(X,Y,…)

Beyond the causality calculus

Upgrading Signal to Signal+
supporting data constraints
Albert Benveniste and Thierry Gautier June 2018

Signal in the landscape of
synchronous languages

The Signal vintage watch

The clock and causality calculus

Beyond the causality calculus: upgrading
Signal to support data constraints

(next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0)
)

T: time
H: height of the main weight
IN: reset value for H

Statements: guarded equations

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

(next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0)
)
Guarded equations
(E1
| E2 when not (H < 0)
| E3 when (H < 0)
)

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

(next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0)
)
Guarded equations
(E1
| E2 when not (H < 0)
| E3 when (H < 0)
)
Incidence graph (bi-partite, non directed)
(E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

(next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0)
)
Guarded equations
(E1
| E2 when not (H < 0)
| E3 when (H < 0)
)
Finding a guarded matching
(E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

Finding a guarded matching
(E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

The venerable Signal+ clock

Albert Benveniste and Thierry Gautier -- June 2018

H

Finding a guarded matching
(E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

Yields again a scheduling
(next H → E1 → next T
| (E2 → next H) when not (H < 0)
| (IN → E3 → next H) when (H < 0)
)

The rules we applied

We assumed a solver handling algebraic equations:

 Solving system of eqns 𝑪𝑪 𝒙𝒙,𝒚𝒚, 𝒛𝒛, … = 𝟎𝟎 for 𝒙𝒙,𝒚𝒚, 𝒛𝒛…
“scalar” variables (no tuples, no vectors)

 Equations possess a notion of “dimension”:
• if equation 𝑪𝑪=0 is itself scalar and 𝒙𝒙 occurs in 𝑪𝑪 ,

then the solver can, generically, use eqn 𝑪𝑪 = 𝟎𝟎 for
determining 𝒙𝒙, given values for other variables

• pair variables with equations defining them: 𝑪𝑪↔ 𝒙𝒙

Typical example: 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 and 𝐶𝐶 𝑥𝑥,𝑦𝑦, 𝑧𝑧, … = 0 smooth

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 50

This looks like an easy generalization

HHHmmmm??????? Too easy??????

Albert Benveniste and Thierry Gautier June 2018

Synchronous specification languages
are much more difficult (but also more
powerful) than synchronous languages

Example of a clutch

Albert Benveniste and Thierry Gautier June 2018

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))
|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
(
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch
released

v1 v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))
|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
(
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch
engaged

v1 v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))
|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
(
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

v1 v2

At each reaction, the following must be evaluated from current
states & inputs: torque1, torque2, next v1, next v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))

|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
(
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Two problems:
• v1 = v2 constrains the memories
• Engaged mode : 4 variables but only 3 equations

v1 v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))

|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
((next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch engaged at previous reaction:
adding the blue eqn is legitimate and gives the missing equation
(index reduction)

v1 v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))

|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
((next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch not engaged at previous reaction:
adding the blue eqn is legitimate and gives the missing equation
the green eqn is falsified

v1 v2

(
(next v1 = f(v1,torque1)
| next v2 = f(v2,torque2))
|
((torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged)
|
((next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged)
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch not engaged at previous reaction:
adding the blue eqn is legitimate and gives the missing equation
the green eqn is falsified: we remove it

v1 v2

The final code for the clutch

Albert Benveniste and Thierry Gautier -- June 2018

v1 v2

released

engaging

engaged

Conclusion

• At our big fights Signal was deemed complex and cryptic;
looking backwards, it appears simpler

• Clocks-and-causalities emerge as a very powerful
framework, which can be the seed for much more…

• Synchronous Languages were developed on strong
ideological bases; it even turned to true radicalization

• So many of these ideas are more and more fertile and so
many areas need them desperately…

01/06/2018-- June 2018Albert Benveniste and Thierry Gautier - 61

Thanks to Nicolas and
remember Paulo…

	The Signal synchronous language: �the principles beyond the language �and how to exploit and extend them
	Diapositive numéro 2
	Diapositive numéro 3
	Oulu
	Oulu
	Synchronous Guys �by Willem-Paul de Roever, 2002
	Giving birth to �Synchronous Languages
	Giving birth to �Synchronous Languages
	Giving birth to �Synchronous Languages
	Giving birth to �Synchronous Languages
	Giving birth to �Synchronous Languages
	Signal: an original positioning in the landscape of synchronous languages
	Lustre �dataflow functional languages
	Esterel�imperative languages
	Signal�equation based language
	Contents
	The Signal vintage watch�
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	Signal�
	Signal�
	Signal�
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	An example of Signal program�and its compilation
	The clock and causality calculus
	Clock and causality calculus�
	Diapositive numéro 37
	Clock and causality calculus�
	Clock and causality calculus�
	The clock equations�
	The clock equations�
	Beyond the causality calculus
	The venerable Signal+ clock�
	The venerable Signal+ clock�
	The venerable Signal+ clock�
	The venerable Signal+ clock�
	The venerable Signal+ clock�
	The venerable Signal+ clock�
	The rules we applied�
	This looks like an easy generalization
	Synchronous specification languages are much more difficult (but also more powerful) than synchronous languages
	The clutch�
	The clutch�
	The clutch�
	The clutch�
	The clutch�
	The clutch�
	The clutch�
	The final code for the clutch�
	Conclusion�
	Thanks to Nicolas and remember Paulo…

