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Synchronous Guys 
by Willem-Paul de Roever, 2002
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Giving birth to 
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Yes, but…
Well, cannot disagree…
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Giving birth to 
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

It’s not time!
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Giving birth to 
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Is it simple?
Is it powerful?

Yes, but…
Well, cannot disagree…
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It’s not time!
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Giving birth to 
Synchronous Languages

Are they programming languages?
Are they modeling languages?

Are they really synchronous?

What is time in synchrony?

Is it simple?
Is it powerful?

What about crowd-correcting? 
Crowd-cleaning?                              

Crowd-debugging?

Yes, but…
Well, cannot disagree…

MMhhh, what about the bananas?

It’s not time!

It can be
It can be

It’s all crowdless
Semantics, semantics, semantics, 
semantics, and more semantics
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Signal: an original positioning in the 
landscape of synchronous languages

Albert Benveniste and Thierry Gautier June 2018



Lustre
dataflow functional languages

Lustre, Lucid Synchrone, 
Scade, (Zélus)

• Streams (seq. of values)
• Dataflow composition à la 

Kahn: functional

• Simple
• No delay-free loop
• Higher order: dynamicity

• (Clocks as types)
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Esterel
imperative languages

Esterel, SyncCharts, 
SCL/SCCharts, 
ReactiveML, the web

• variables and values, 
await, emit, ||, preemption

• Difficulty: combining   ||
and immediate control 
passing

• Reaction as a fixpoint
problem: 0/1/several 
solutions
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Signal
equation based language

Open systems and 
architecture modeling:
• Synchronization
• Clocks as 1st class citizens

A program can have 1000’s       
of clocks ⇒ clocks must be 
synthesized, not verified
• (clocks as types in Lustre

⇒ “condact” used in Scade)

• Clock equations + 
Dataflow expressions

• Nondeterminism                     
(but controlled)

• Open systems: stuttering 
invariance  

• (a system has always the provision 
to sleep while its environment acts)

• Difficulty: Clocks ↔ Data
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An example of Signal program
and its compilation
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(  X := IN default ZX-1 stream funct
| ZX := X$1 init 0       stream funct
| IN ^= when (ZX < 0) ) clock eqn

Signal code             Intuitive pseudo-codes: 

X := pre(X)-1 
reset IN every pre(X)<0

Input  IN returns X (mmmmhhh??)
IN is provided only when used

IN
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( X := IN default ZX-1 stream funct
| ZX := X$1 init 0       stream funct
| IN ^= when (ZX < 0) ) clock eqn

This was Signal code; intuitive pseudo-code  is: 

X := pre(X)-1                                                                 
reset IN every pre(X)<0

Input  IN returns X (mmmmhhh??)
IN is provided only when used

IN 2 3 5
ZX 0 2 1 0 3 2 1 0 5
X 2 1 0 3 2 1 0 5 4



An example of Signal program
and its compilation
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( X := IN default ZX-1 stream funct
| ZX := X$1 init 0       stream funct
| IN ^= when (ZX < 0) ) clock eqn

This was Signal code; intuitive pseudo-code  is: 

X := pre(X)-1                                                                 
reset IN every pre(X)<0

IN is schizophrenic: its value is an input of the 
program but its clock (instants of presence) is not

IN 2 3 5
ZX 0 2 1 0 3 2 1 0 5
X 2 1 0 3 2 1 0 5 4



X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

Signal
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X := f(U,V)

X := Y$1 init X0

•: absence (stuttering invariance)

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •



Signal
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X := f(U,V)

X := Y$1 init X0

X := U default V

X := Y when B

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •

X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

X u1 • • • v2 • u2 •
U u1 • • • • • u2 •
V v1 • • • v2 • • •

X y • • • yk • • •
Y y1 yk
B True True 



X x0 • • y1 • • • y2
Y y1 • • y2 • • • y3

Signal
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X := f(U,V)

X := Y$1 init X0

X := U default V

X := Y when B

K ^= H equality of clocks: a constraint

X f(u,v) • • • f(u,v) • • •
U u1 • • • u2 • • •
V v1 • • • v2 • • •

X u1 • • • v2 • u2 •
U u1 • • • • • u2 •
V v1 • • • v2 • • •

X y • • • yk • • •
Y y1 yk
B True True 



An example of Signal program
and its compilation
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( X := IN default ZX-1
| ZX := X$1 init 0   
| IN ^= when (ZX < 0) )

(  X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
|  B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
|  H ^= B ^= X ^= ZX ) clock eqn

[B]: when B
Expanded as



An example of Signal program
and its compilation
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(  X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
|  B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
|  H ^= B ^= X ^= ZX ) clock eqn

[B]: when B

XIN ZX

H[B]

B

HIN H-HIN( X := IN default ZX-1
| ZX := X$1 init 0   
| IN ^= when (ZX < 0) )



An example of Signal program
and its compilation
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(  X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
|  B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
|  H ^= B ^= X ^= ZX ) clock eqn

[B]: when B
case B true
case B false

XIN ZX

H[B]

B

HIN H-HIN



An example of Signal program
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(  X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
|  B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
|  H ^= B ^= X ^= ZX ) clock eqn

[B]: when B
case B true
case B false

XIN ZX

H[B]

B



An example of Signal program
and its compilation
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(  X := IN default ZX-1 stream func
| ZX := X$1 init 0 stream func
|  B := (ZX < 0) stream func
| IN ^= (when B) clock eqn
|  H ^= B ^= X ^= ZX ) clock eqn

[B]: when B
case B true
case B false

X ZX

H[B]

B



An example of Signal program
and its compilation
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(  X := IN default ZX-1
| ZX := X$1 init 0
|  B := (ZX < 0) 
| IN ^= (when B) 
|  H ^= B ^= X ^= ZX )

XIN ZX

H[B]

B

HIN H-HIN



An example of Signal program
and its compilation
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(  X := IN default ZX-1
| ZX := X$1 init 0
|  B := (ZX < 0)
| IN ^= (when B)
|  H ^= B ^= X ^= ZX )

XIN ZX

H[B]

B

HIN H-HIN



An example of Signal program
and its compilation
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(  X := IN default ZX-1
| ZX := X$1 init 0
|  B := (ZX < 0)
| IN ^= (when B)
|  H ^= B ^= X ^= ZX )

( 
(  H ^= B ^= X ^= ZX
| IN ^= (when B) )

|
(  X   H
| ZX   H
| B   (H,ZX)
| (when B)  B
| IN   (when B) 
| (X   IN) when B 
| (X   ZX) when not B )

|
(  B := (ZX < 0)
| ZX := X$1 init 0 
| (X := IN) when B
| (X := ZX-1) when not B)

) XIN ZX

H[B]

B

HIN H-HIN



An example of Signal program
and its compilation

Albert Benveniste and Thierry Gautier -- June 2018

Clock equations

Causality constraints

Computation actions 

( 
(  H ^= B ^= X ^= ZX
| IN ^= (when B) )

|
(  X   H
| ZX   H
| B   (H,ZX)
| (when B)  B
| IN   (when B) 
| (X   IN) when B 
| (X   ZX) when not B )

|
(  B := (ZX < 0)
| ZX := X$1 init 0 
| (X := IN) when B
| (X := ZX-1) when not B)

)



An example of Signal program
and its compilation

Albert Benveniste and Thierry Gautier -- June 2018

( X := IN default ZX-1
| ZX := X$1 init 0   
| IN ^= when (ZX < 0) )

Signal compilation
is by
program rewriting

( 
(  H ^= B ^= X ^= ZX
| IN ^= (when B) )

|
(  X   H
| ZX   H
| B   (H,ZX)
| (when B)  B
| IN   (when B) 
| (X   IN) when B 
| (X   ZX) when not B )

|
(  B := (ZX < 0)
| ZX := X$1 init 0 
| (X := IN) when B
| (X := ZX-1) when not B)

)



The clock and causality calculus

Intuition 

Albert Benveniste and Thierry Gautier June 2018

Signal in the landscape of      
synchronous languages

The Signal vintage watch

The clock and causality calculus

Beyond the causality calculus: upgrading 
Signal to support data constraints



Clock and causality calculus

Albert Benveniste and Thierry Gautier -- June 2018

( 
(  H ^= B ^= X ^= ZX
| IN ^= (when B) )

|
(  X  H
| ZX  H
| B  H,ZX 
| (when B) B
| IN  (when B) 
| (X  IN) when B 
| (X  ZX) when not B )

|
(  B := (ZX < 0)
| ZX := X$1 init 0 
| (X := IN) when B
| (X := ZX-1) when not B)

)

∅ = when B ∩ whennot B

X  ZX ; X:=ZX-1 
IN ^= when B

X  IN ; X:=IN 

H ^= B ^= X ^= ZX
X,ZX  H

B  H,ZX ; B:=(ZX<0) 
when B  B

H

when not Bwhen B



X  ZX ; X:=ZX-1 
IN ^= when B

X  IN ; X:=IN 

H ^= B ^= X ^= ZX
X,ZX  H

B  H,ZX ; B:=(ZX<0) 
when B  B
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H

when Cwhen B

( 
(  H ^= B ^= X ^= ZX
| IN ^= (when B) )

|
(  X  H
| ZX  H
| B,C  H,ZX 
| (when B) B
| IN  (when B) 
| (X  IN) when B 
| (X  ZX) when C )

|
(  B := (ZX < 0); C:=…
| ZX := X$1 init 0 
| (X := IN) when B
| (X := ZX-1) when C )

)

Clock and causality calculus



X  ZX ; X:=ZX-1 
IN ^= when B

X  IN ; X:=IN 

H ^= B ^= X ^= ZX
X,ZX  H

B  H,ZX ; B:=(ZX<0) 
when B  B
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H

when Cwhen B

To ensure the absence of race 
condition, a proof obligation 

is added to the clock calculus:

∅ ^= when B ∩ when C  

Clock and causality calculus



In general, clock equations 
originate from: 

• the code itself

• race conditions: have 
them with ∅ clock

• causality circuits: have 
them with ∅ clock

We need to prove that the 
clock system is satisfiable
and we must represent all 
solutions of it
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X  ZX ; X:=ZX-1 
IN ^= when B

X  IN ; X:=IN 

H ^= B ^= X ^= ZX
X,ZX  H

B  H,ZX ; B:=(ZX<0) 
when B  B

H

when Cwhen B

Clock and causality calculus



Clock equations 
originate from: 
• the code itself
• race conditions: have 

them with ∅ clock
• causality circuits: 

have them 
with ∅ clock

Wanted: a clock 
hierarchy, leading to 
code with nested ifs
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The clock equations

Clocks and clock equations
1. ∅ (nil); no “top”
2. H ^= K
3. H ^∧ K, H ^∨ K
4. H ^- K (not K by abuse )

5. when pred(X,Y,…)



For the classes 1—4 of 
eqns a near-Boolean 
calculus applies: 
• the only difference is 

that no top exists

Class 5 is special:   
when pred(X,Y,…)
is a predicate that 
cannot be rewritten     
in a different form 
(X,Y,… uncontrolled)
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The clock equations

Clocks and clock equations
1. ∅ (nil); no “top”
2. H ^= K
3. H ^∧ K, H ^∨ K
4. H ^- K (not K by abuse )

5. when pred(X,Y,…)



Beyond the causality calculus

Upgrading Signal to Signal+                                   
supporting data constraints
Albert Benveniste and Thierry Gautier June 2018

Signal in the landscape of      
synchronous languages

The Signal vintage watch

The clock and causality calculus

Beyond the causality calculus: upgrading 
Signal to support data constraints



(  next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0) 
)

T: time
H: height of the main weight
IN: reset value for  H

Statements: guarded equations

The venerable  Signal+  clock

Albert Benveniste and Thierry Gautier -- June 2018

H



(  next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0) 
)
Guarded equations
(  E1
|  E2 when not (H < 0)
|  E3 when (H < 0)
)

The venerable  Signal+  clock
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H



(  next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0) 
)
Guarded equations
(  E1
|  E2 when not (H < 0)
|  E3 when (H < 0)
)
Incidence graph (bi-partite, non directed)
(  E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable  Signal+  clock
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H



(  next T – T = -k * (next H - H)
| (next H = H – v) when not (H < 0)
| (next H = IN) when (H < 0) 
)
Guarded equations
(  E1
|  E2 when not (H < 0)
|  E3 when (H < 0)
)
Finding a guarded matching
(  E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable  Signal+  clock

Albert Benveniste and Thierry Gautier -- June 2018

H



Finding a guarded matching
(  E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

The venerable  Signal+  clock
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H



The venerable  Signal+  clock

Albert Benveniste and Thierry Gautier -- June 2018

H

Finding a guarded matching
(  E1 ↔ next T, next H
| (E2 ↔ next H) when not (H < 0)
| (E3 ↔ next H, IN) when (H < 0)
)

Yields again a scheduling
(  next H → E1 → next T
| (E2 → next H) when not (H < 0)
| (IN → E3 → next H) when (H < 0)
)



The rules we applied

We assumed a solver handling algebraic equations:

 Solving system of eqns 𝑪𝑪 𝒙𝒙,𝒚𝒚, 𝒛𝒛, … = 𝟎𝟎 for  𝒙𝒙,𝒚𝒚, 𝒛𝒛…
“scalar” variables (no tuples, no vectors)

 Equations possess a notion of “dimension”: 
• if equation  𝑪𝑪=0  is itself scalar and 𝒙𝒙 occurs in  𝑪𝑪 , 

then the solver can, generically, use eqn 𝑪𝑪 = 𝟎𝟎 for 
determining  𝒙𝒙,  given values for other variables 

• pair variables with equations defining them: 𝑪𝑪↔ 𝒙𝒙

Typical example:   𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑅𝑅 and   𝐶𝐶 𝑥𝑥,𝑦𝑦, 𝑧𝑧, … = 0 smooth
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This looks like an easy generalization

HHHmmmm??????? Too easy??????

Albert Benveniste and Thierry Gautier June 2018



Synchronous specification languages 
are much more difficult (but also more 
powerful) than synchronous languages

Example of a clutch

Albert Benveniste and Thierry Gautier June 2018



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )
|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( 
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch 
released

v1 v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )
|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( 
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch 
engaged

v1 v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )
|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( 
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

v1 v2

At each reaction, the following must be evaluated from current 
states & inputs: torque1, torque2, next v1, next v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )

|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( 
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Two problems:
• v1 = v2  constrains the memories
• Engaged mode : 4 variables but only 3 equations 

v1 v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )

|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( (next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch engaged at previous reaction:                                               
adding the blue eqn is legitimate and gives the missing equation 
(index reduction)

v1 v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )

|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( (next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )

)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch not engaged at previous reaction:                                               
adding the blue eqn is legitimate and gives the missing equation 
the green eqn is falsified

v1 v2



(
( next v1 = f(v1,torque1)
| next v2 = f(v2,torque2) )
|
( (torque1 = 0) when not Engaged
| (torque2 = 0) when not Engaged )
|
( (next v1 = next v2) when Engaged
| (v1 = v2) when Engaged
| (torque1 + torque2 = 0) when Engaged )
)

The clutch

Albert Benveniste and Thierry Gautier -- June 2018

Clutch

Case clutch not engaged at previous reaction:                                               
adding the blue eqn is legitimate and gives the missing equation 
the green eqn is falsified: we remove it

v1 v2



The final code for the clutch

Albert Benveniste and Thierry Gautier -- June 2018

v1 v2

released

engaging

engaged



Conclusion

• At our big fights Signal was deemed complex and cryptic; 
looking backwards, it appears simpler

• Clocks-and-causalities emerge as a very powerful 
framework, which can be the seed for much more…

• Synchronous Languages were developed on strong 
ideological bases; it even turned to true radicalization

• So many of these ideas are more and more fertile and so 
many areas need them desperately…
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Thanks to Nicolas and 
remember Paulo… 
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