Equivalences of Synchronous Block Diagrams: THE CASE OF DELAYS AND LOCAL TIME SCALES Adrien Guatto

University of Bamberg

Halbwachs scientific days, June 2018

Time Warps

• Time warps generalize the notion of clock present in Lustre-like languages, making it possible to describe streams that grow by more than one element per tick. • Formally, time warps are sup-preserving functions from $\omega + 1$ to itself. In other words, a monotonic function $p: \omega + 1 \rightarrow \omega + 1$ is a time warp iff

p(0) = 0 and $p(\omega) = \min_{n \leq \omega} p(n)$.

- Time warps $|\mathcal{W}|$ can be made into a partially-ordered monoid $\mathcal{W} \triangleq (|\mathcal{W}|, *, id, \leq)$ with $p * q \triangleq n \mapsto q(p(n))$ and $p \leq q \triangleq \forall n, p(n) \leq q(n)$.
- In practice, one may want to consider an algorithmically-tractable subclass of time warps.

Delays and Local Time Scales

• Assume p and q are time warps such that $q \leq p$. A **delay** allows us to consume at the rate described by q data that was produced at the rate described by p.

Delays can be implemented as finite circular buffers when p - q is bounded. • One may run any block diagram within a **local time scale** driven by a time warp p which controls the relationship between internal and external ticks. For instance, a time scale driven by (2) performs two internal ticks for each external tick.

For instance, those presentable as running sums of ultimately periodic sequences.

-We write u(v) for the infinite sequence

uvvvv...

-Such a sequence w denotes the unique time warp sending any $0 < n < \omega$ to $\sum_{i < n} w_i$, where w_i is the *i*th natural number in w (starting at 0). - Presentable time warps are closed by *, e.g.,

Equivalences Between Block Diagrams Involving Delays and Local Time Scales

involving local time scales and delays. They hold for any blocks $f: p \to q$ and $g: q \to s$.

to simplify program proof. They also have applications in category theory, where they are the key to *coherence* theorems.

- Each equation belongs to one of three groups.
- We assume that both sides of the equation are well-