
Amaury Graillat1,2, Matthieu Moy3,
Pascal Raymond1, Benôıt Dupont de Dinechin2

1 Univ. Grenoble Alpes / Verimag, France
2 Kalray, Montbonnot, France

3 Université de Lyon, Université Claude-Bernard Lyon 1, Inria, CNRS, ENS de Lyon, LIP

Parallel Code Generation of Dataflow Synchronous
Programs for a Many-core Architecture

Parallel Code Generation from Lustre/Scade

B

D
CE

F

Ai1

i2

PCGK
Parallel

Executable

Core 0: A;B
Core 1: E;C
Core 2: D;F

Root

Lustre program

Static and non-preemptive
pre init

o1

Mapping/schedule

I Parallel execution

I WCET guarantee accounting for memory interference

I Time-triggered execution

I Code Traceability

The Kalray MPPA2 Many-core

IO Cluster

Compute Cluster

The Kalray MPPA2

P0 P1

P2 P3

P4 P5

P6 P7

RM

Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

Tx

8
sh

ar
ed

m
em

o
ry

b
a

n
k

s 8
sh

ared
m

em
o

ry
b

a
n

k
s

Compute Cluster

I Good timing properties of cores

I Banked memory to minimize interferences

I Synchronizable mesochronous clocks on the cores

Workflow of the Parallel Code Generator for Kalray (PCGK)

Parallelism
Extraction

Communication &
Schedule

Code Generator

communication.c

schedule.c

system.c

functional
code.c Scheduling

Mapping

Graph
Task

System Code Generator
(Memory placement,

NoC, synchronization)
Release Date
Computation

Release date
Injection

Executable for
Kalray MPPA2

Lustre/Scade
program

External Tool Contribution

+WCET WCET+

I PCGK generates code for system configuration, shared-memory and NoC communications, synchronizations and task creation

I Schedule is computed with Mapschedule [2]

I Worst-Case Execution Time (WCET) in isolation for each task computed with Otawa [1]

I MIA [3] computes release dates for the tasks taking into account memory interference and dependencies.

Implementation of Delayed Communications

I Delay replaced with a SWAP task: A.i = S.i

I S executed after both A and B

I Example when A before B and B before A:

A

B

pre

i1

i2

o1
init

o2
b

X B

Input buffer of S:
Input buffer of A:

S

n n+1

A

n

n-1

Consumer before producer Producer before consumer

SB

n n+1

AY

Initial Clock Synchronization

I Hardware global timer to synchronize clusters

I Barrier to synchronize cores local timer

Core 0

Core 2

Core 0

Core 1

Core 1
origin = tt = 0

Thread
Initialization

Global barrier

Cluster 1

Cluster 0

Power on T

origin = tt = 0

origin = tt = 0

origin = tt = 0

origin = tt = 0

T

period 0

Time-Triggered Execution

I Increases predictability of memory congestion

I Release dates to begin computations

Core 2

Core 1

Core 0

TE

TFTD

TB

TC

relE relC

relFrelD

relB

Data is guaranteed to be available.

relA

period n period n + 1

TA

S
relS

I Example: thread core 0:
while(true) {

while(t<releaseA){};
T_A();
send_outputs_A();
while(t<releaseB){};
T_B();
send_outputs_B();

}

1 period

[1] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
Otawa: an open toolbox for adaptive wcet analysis.
In IFIP, SEUS 2010, pages 35–46. Springer, 2010.

[2] Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut.
Scheduling of parallel applications on many-core architectures with caches: bridging the gap between WCET analysis and
schedulability analysis.
In JRWRTC 2015, Lille, France, November 2015.

[3] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I Davis, and Sebastian Altmeyer.
Response time analysis of synchronous data flow programs on a many-core processor.
In RTNS’16, pages 67–76. ACM, 2016.

amaury.graillat@univ-grenoble-alpes.fr


