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Parallel Code Generation of Dataflow Synchronous
Programs for a Many-core Architecture

Parallel Code Generation from Lustre/Scade

B

D
CE

F

Ai1

i2

PCGK
Parallel

Executable

Core 0: A;B
Core 1: E;C
Core 2: D;F

Root

Lustre program

Static and non-preemptive
pre init

o1

Mapping/schedule

I Parallel execution

I WCET guarantee accounting for memory interference

I Time-triggered execution

I Code Traceability
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Compute Cluster

I Good timing properties of cores

I Banked memory to minimize interferences

I Synchronizable mesochronous clocks on the cores

Workflow of the Parallel Code Generator for Kalray (PCGK)
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I PCGK generates code for system configuration, shared-memory and NoC communications, synchronizations and task creation

I Schedule is computed with Mapschedule [2]

I Worst-Case Execution Time (WCET) in isolation for each task computed with Otawa [1]

I MIA [3] computes release dates for the tasks taking into account memory interference and dependencies.

Implementation of Delayed Communications

I Delay replaced with a SWAP task: A.i = S.i

I S executed after both A and B

I Example when A before B and B before A:
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Initial Clock Synchronization

I Hardware global timer to synchronize clusters

I Barrier to synchronize cores local timer
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Time-Triggered Execution

I Increases predictability of memory congestion

I Release dates to begin computations
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I Example: thread core 0:
while(true) {

while(t<releaseA){};
T_A();
send_outputs_A();
while(t<releaseB){};
T_B();
send_outputs_B();

}
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